Plasma Knowledge

Plasma Surface Modification

 
Plasma surface modification is an extremely useful and important tool. Modifying a surface’s characteristics is often a necessary part of the industrial process. Plasma surface technology can modify the traits of a surface on the molecular level. Surface activation can be used to increase a surface’s adhesion potential, for example the ability for paints and glue to adhere to it. Plasma surface modification can also be used to create designated patterns on a surface. This is a process called etching and is widely used in the production of printed circuit boards. Plasma surface modification can layer surfaces with a coating to protect them or give them different characteristics by introducing monomers into the system.

Plasma Surface Science

 
To begin the plasma surface modification process, first you insert the surface you want to treat into the chamber. A vacuum then empties the chamber of air and creates a very low pressure inside. Then a small quantity of gas is added into the chamber. This gas is usually air, hydrogen, nitrogen, argon, oxygen or a combination of these gases. The gas inside the chamber is then ionized by an electrical charge creating plasma ions. These ions react with the outer layer of the surface and modify it on the molecular level. Depending on the plasma surface treatment that you want to perform, you can adjust the type of plasma used, the pressure inside the chamber, and how long the surface is treated to adapt your surface to the exact specifications that you need.
 
A Plasma System to Suit Each Application & Advantages of Plasma-enhanced Chemical Vapor Deposition (PECVD)Adhesion Science & Adhesion TreatmentsAnisotropic Etching & The Methods and Uses for Anisotropic EtchingApplications of a Plasma Asher & Surface ModificationArgon Plasma & Argon Plasma Role in Micro-SandblastingAtmospheric Pressure Plasma & Applications of Atmospheric Pressure PlasmaBonding Polyethylene & Using Plasma for Bonding PolyethyleneCoating PVD & Advantages and Disadvantages of Coating PVDContact Angle Measurements & How to Measure Contact AnglesCorona Discharge & The Properties of Corona DischargesCorona Treatment & The Differences between Corona Treatment and Atmospheric PlasmaCVD & Plasma Enhanced CVDDifferences between the Types of Plasma Treatments, Specifically Plasma Coating & Plasma Treatments IntroductionDry Etching & Dry Etching vs. Wet EtchingDry Etching (Plasma Etching) and Wet Etching & Advantages and Disadvantages of Dry Etching (Plasma Etching) and Wet EtchingDyne Levels & Determining a Dyne Level Using a Dyne TestDyne Testing & More about Dyne TestingEtching Silicon & How Etching Silicon is DoneEvaporated Coatings & Methods of Applying Evaporated CoatingsHF Etching & Buffered HF EtchingHistory of Plasma Treatment & Why Powder Plasma Treatment?How to Measure Surface Tension & More Methods of Measuring Surface TensionHydrogen H2 Plasma & Oxide-Layer Reduction with Hydrogen PlasmaHydrogen Peroxide Plasma & The Advantages and Uses of Hydrogen Peroxide Plasma SterilizationHydrophilic Treatment & How Hydrophilic Treatment WorksHydrophobic Coatings vs. Hydrophilic Coatings & Uses for Hydrophobic CoatingsInductive Plasma & The Application of Inductive PlasmaIndustries That a Plasma Asher is Used In & Plasma Etch Customer Parts (Plastic, Metal, Glass)Intelligent Textiles & The Possible Applications of Intelligent TextilesIsotropic Etching & Wet Isotropic Etching vs. Dry Isotropic EtchingLength of Activation for Plasma Treatments & Plasma Treatments and Types of Plasma CoatingLow Pressure Plasma Systems & Types of Low Pressure Plasma SystemsMaximizing Coating Adhesion & Applications of Improving Coating AdhesionNanotechnology Fabrics & Nanotechnology Fabric ProcessesNitrogen Plasma & Nitrogen Plasma vs. Oxygen PlasmaOleophobic Coating & Oleophobic Coating Plasma TreatmentOxide Etch & Buffered Oxide Etch vs. Plasma EtchOxygen Plasma Etching & How Oxygen Plasma Etching is AccomplishedPECVD Industrial Applications & PECVD EfficiencyPECVD Is an Improved Method of Chemical Vapor Deposition & Operation of PECVD SystemsPhysical Vapor Deposition & Physical Vapor Deposition ApplicationsPlasma Applications & Plasma applications in Surface ModificationPlasma Asher & How is Plasma Ashing Done?Plasma Asher Tailored to the Customer & Plasma Etchers and SelectivityPlasma Beam & Plasma Beam ApplicationsPlasma Bonding & The Techniques for Plasma BondingPlasma Etching Tailored to the Customer & Plasma Etcher ParametersPlasma Frequency & Ranges of Plasma FrequencyPlasma Gas & Plasma Gas (Partially Ionized Gas) – Degree of IonizationPlasma Generator & Types of Plasma GeneratorsPlasma Surface Modification & Plasma Surface SciencePlasma Surface Technology & Surface Technology CapabilitiesPlasma Treatment of Different Materials & Plasma Treatment of Silica PowderPlasma Treatment of Powder Applications & Experienced Powder TreatmentPlasma Treatment of Textiles & Plasma Treatment of Textiles: Medical and Technological ApplicationsPlasma Treatment Services & The Use of Corona and Plasma Treatment to Modify Contact AnglePlasma Treatment Systems & Plasma TreaterPlasma Treatments and the History of Plasma & Plasma Treat Different MaterialsPowder Treatment for the Customer & Industries that Need Powder TreatmentSteps of Dry Etching (Plasma Etching) and Wet Etching & Dyne Levels and Plasma Etching TechnologiesSurface Coating with PECVD System & Applications of PECVD SystemsSurface Treatments & Uses for Surface TreatmentsThierry Plasma Systems & What is Plasma-enhanced chemical vapor deposition (PECVD)?What Industries Plasma Etching Is Used In & Plasma Etching MechanismsWhat is a Plasma Asher? & Differences between Plasma Etch and Plasma AshWhat is Plasma Density? & Plasma Density: Cold and Hot PlasmaWhat is Plasma Treatment? & Plasma Treatment of Powders

Contact form light

Contact Request
*required
**required if you want a callback